|
|
51CTO旗下网站
|
|
移动端
创建专栏

PyTorch的4分钟教程,手把手教你完成线性回归

本文旨在介绍PyTorch基础部分,帮助新手在4分钟内实现python PyTorch代码的初步编写。

作者:大数据文摘|2019-07-28 20:24

PyTorch

大数据文摘出品

编译:洪颖菲、宁静

PyTorch深度学习框架库之一,是来自Facebook的开源深度学习平台,提供研究原型到生产部署的无缝衔接。

本文旨在介绍PyTorch基础部分,帮助新手在4分钟内实现python PyTorch代码的初步编写。

下文出现的所有功能函数,均可以在中文文档中查看具体参数和实现细节,先附上pytorch中文文档链接:

https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch/

coding前的准备

需要在电脑上安装Python包,导入一些科学计算包,如:numpy等,最最重要的,别忘记导入PyTorch,下文的运行结果均是在jupyter notebook上得到的,感兴趣的读者可以自行下载Anaconda,里面自带有jupyter notebook。(注:Anaconda支持python多个版本的虚拟编译环境,jupyter notebook是一个web形式的编译界面,将代码分割成一个个的cell,可以实时看到运行结果,使用起来非常方便!)

软件的配置和安装部分,网上有很多教程,这里不再赘述,纸上得来终觉浅,绝知此事要躬行。让我们直接进入Pytorch的世界,开始coding吧!

Tensors

Tensor张量类型,是神经网络框架中重要的基础数据类型,可以简单理解为一个包含单个数据类型元素的多维矩阵,tensor之间的通过运算进行连接,从而形成计算图。

下面的代码实例中创建了一个2*3的二维张量x,指定数据类型为浮点型(Float):

  1. import torch 
  2. #Tensors 
  3. x=torch.FloatTensor([[1,2,3],[4,5,6]]) 
  4. print(x.size(),"\n",x) 

运行结果:

PyTorch包含许多关于tensors的数学运算。除此之外,它还提供了许多实用程序,如高效序列化Tensor和其他任意数据类型,以及其他有用的实用程序。

下面是Tensor的加法/减法的一个例子,其中torch.ones(*sizes, out=None) → Tensor返回一个全为1 的张量,形状由可变参数sizes定义。在实例中,和变量x相加的是创建的两个相应位置值为1的2*3的张量,相当于x每一维度的值+2,代码和运行结果如下所示:

  1. #Add tensors 
  2. x.add_(torch.ones([2,3])+torch.ones([2,3])) 

运行结果:

同样的,PyTorch也支持减法操作,实例如下,在上面的运行结果基础上每一维度再减去2,x恢复到最初的值。

  1. #Subtract Tensor 
  2. x.sub_(torch.ones([2,3])*2) 

运行结果:

其他PyTorch运算读者可以查阅上文给出的中文链接。

PyTorch and NumPy

用户可以轻松地在PyTorch和NumPy之间来回转换。

下面是将np.matrix转换为PyTorch并将维度更改为单个列的简单示例:

  1. #Numpy to torch tensors 
  2. import numpy as np 
  3. y=np.matrix([[2,2],[2,2],[2,2]]) 
  4. z=np.matrix([[2,2],[2,2],[2,2]],dtype="int16"
  5. x.short() @ torch.from_numpy(z) 

运行结果:

其中@为张量乘法的重载运算符,x为2*3的张量,值为[[1,2,3],[4,5,6]],与转换成tensor的z相乘,z的大小是3*2,结果为2*2的张量。(与矩阵乘法类似,不明白运行结果的读者,可以看下矩阵的乘法运算)

除此外,PyTorch也支持张量结构的重构reshape,下面是将张量x重构成1*6的一维张量的实例,与numpy中的reshape功能类似。

  1. #Reshape tensors(similar to np.reshape) 
  2. x.view(1,6) 

运行结果:

GitHub repo概述了PyTorch到numpy的转换,链接如下:

https://github.com/wkentaro/pytorch-for-numpy-users

CPU and GPUs

PyTorch允许变量使用 torch.cuda.device上下文管理器动态更改设备。以下是示例代码:

  1. #move variables and copies across computer devices 
  2. x=torch.FloatTensor([[1,2,3],[4,5,6]]) 
  3. y=np.matrix([[2,2,2],[2,2,2]],dtype="float32"
  4.  
  5.  
  6. if(torch.cuda.is_available()): 
  7.     xx=x.cuda(); 
  8.     y=torch.from_numpy(y).cuda() 
  9.     z=x+y 
  10. print(z) 
  11.  
  12. print(x.cpu()) 

运行结果:

PyTorch Variables

变量只是一个包裹着Tensor的薄层,它支持几乎所有由Tensor定义的API,变量被巧妙地定义为自动编译包的一部分。它提供了实现任意标量值函数自动区分的类和函数。

以下是PyTorch变量用法的简单示例,将v1和v2相乘的结果赋值给v3,其中里面的参数requires_grad的属性默认为False,若一个节点requires_grad被设置为True,那么所有依赖它的节点的requires_grad都为True,主要用于梯度的计算。

  1. #Variable(part of autograd package) 
  2. #Variable (graph nodes) are thin wrappers around tensors and have dependency knowle 
  3. #Variable enable backpropagation of gradients and automatic differentiations 
  4. #Variable are set a 'volatile' flad during infrencing 
  5.  
  6.  
  7. from torch.autograd import Variable 
  8. v1 = Variable(torch.tensor([1.,2.,3.]), requires_grad=False
  9. v2 = Variable(torch.tensor([4.,5.,6.]), requires_grad=True
  10. v3 = v1*v2 
  11.  
  12.  
  13. v3.data.numpy() 

运行结果:

  1. #Variables remember what created them 
  2. v3.grad_fn 

运行结果:

Back Propagation

反向传播算法用于计算相对于输入权重和偏差的损失梯度,以在下一次优化迭代中更新权重并最终减少损失,PyTorch在分层定义对于变量的反向方法以执行反向传播方面非常智能。

以下是一个简单的反向传播计算方法,以sin(x)为例计算差分:

  1. #Backpropagation with example of sin(x) 
  2. x=Variable(torch.Tensor(np.array([0.,1.,1.5,2.])*np.pi),requires_grad=True
  3. y=torch.sin(x) 
  4. x.grad 
  5. y.backward(torch.Tensor([1.,1.,1.,1])) 
  6.  
  7.  
  8. #Check gradient is indeed cox(x) 
  9. if( (x.grad.data.int().numpy()==torch.cos(x).data.int().numpy()).all() ): 
  10.     print ("d(sin(x)/dx=cos(x))") 

运行结果:

对于pytorch中的变量和梯度计算可参考下面这篇文章:

https://zhuanlan.zhihu.com/p/29904755

SLR: Simple Linear Regression

现在我们了解了基础知识,可以开始运用PyTorch 解决简单的机器学习问题——简单线性回归。我们将通过4个简单步骤完成:

第一步:

在步骤1中,我们创建一个由方程y = wx + b产生的人工数据集,并注入随机误差。请参阅以下示例:

  1. #Simple Liner Regression 
  2. # Fit a line to the data. Y =w.x+b 
  3. #Deterministic behavior 
  4. np.random.seed(0) 
  5. torch.manual_seed(0) 
  6. #Step 1:Dataset 
  7. w=2;b=3 
  8. x=np.linspace(0,10,100) 
  9. y=w*x+b+np.random.randn(100)*2 
  10. xx=x.reshape(-1,1) 
  11. yy=y.reshape(-1,1) 

第二步:

在第2步中,我们使用forward函数定义一个简单的类LinearRegressionModel,使用torch.nn.Linear定义构造函数以对输入数据进行线性转换:

  1. #Step 2:Model 
  2. class LinearRegressionModel(torch.nn.Module): 
  3.      
  4.     def __init__(self,in_dimn,out_dimn): 
  5.         super(LinearRegressionModel,self).__init__() 
  6.         self.model=torch.nn.Linear(in_dimn,out_dimn) 
  7.          
  8.     def forward(self,x): 
  9.         y_pred=self.model(x); 
  10.         return y_pred; 
  11.      
  12. model=LinearRegressionModel(in_dimn=1out_dimn=1

torch.nn.Linear参考网站:

https://pytorch.org/docs/stable/_modules/torch/nn/modules/linear.html

第三步:

下一步:使用 MSELoss 作为代价函数,SGD作为优化器来训练模型。

  1. #Step 3: Training 
  2. cost=torch.nn.MSELoss() 
  3. optimizer=torch.optim.SGD(model.parameters(),lr=0.01,momentum=0.9) 
  4. inputs=Variable(torch.from_numpy(x.astype("float32"))) 
  5. outputs=Variable(torch.from_numpy(y.astype("float32"))) 
  6.  
  7.  
  8. for epoch in range(100): 
  9. #3.1 forward pass: 
  10.     y_pred=model(inputs) 
  11.      
  12. #3.2 compute loss 
  13.     loss=cost(y_pred,outputs) 
  14.      
  15. #3.3 backward pass 
  16.     optimizer.zero_grad(); 
  17.     loss.backward() 
  18.     optimizer.step() 
  19.     if((epoch+1)%10==0): 
  20.         print("epoch{},loss{}".format(epoch+1,loss.data)) 

运行结果:

  • MSELoss参考网站:https://pytorch.org/docs/stable/_modules/torch/nn/modules/loss.html
  • SGD参考网站:https://pytorch.org/docs/stable/_modules/torch/optim/sgd.html

第四步:

现在训练已经完成,让我们直观地检查我们的模型:

  1. #Step 4:Display model and confirm 
  2. import matplotlib.pyplot as plt 
  3. plt.figure(figsize=(4,4)) 
  4. plt.title("Model and Dataset") 
  5. plt.xlabel("X");plt.ylabel("Y") 
  6. plt.grid() 
  7. plt.plot(x,y,"ro",label="DataSet",marker="x",markersize=4
  8. plt.plot(x,model.model.weight.item()*x+model.model.bias.item(),label="Regression Model"
  9. plt.legend();plt.show() 

运行结果:

现在你已经完成了PyTorch的第一个线性回归例子的编程了,对于后续希望百尺竿头,更进一步的读者来说,可以参考PyTorch的官方文档链接,完成大部分的编码应用。

相关链接:

https://medium.com/towards-artificial-intelligence/pytorch-in-2-minutes-9e18875990fd

【本文是51CTO专栏机构大数据文摘的原创译文,微信公众号“大数据文摘( id: BigDataDigest)”】

     大数据文摘二维码

戳这里,看该作者更多好文

【编辑推荐】

  1. 2019年过去一小半了,这些深度学习研究值得一看!
  2. 「决战紫禁之巅」之深度学习框架篇:Keras VS PyTorch
  3. 55岁加入Google做程序员,69岁还在编程,这才是代码人生
  4. 代码详解:Python虚拟环境的原理及使用
  5. 这是谁写的代码,给我站出来,保证不打死你!
【责任编辑:赵宁宁 TEL:(010)68476606】

点赞 0
分享:
大家都在看
猜你喜欢